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No Year New Wave Discovered by Country Features

1 1885 Rayleigh waves Lord Rayleigh England
Two components of vibrations L, SV, 

half-space 

2 1911 Love waves A.E.H. Love England
One SH component of vibrations, layered 

half-space 

3 1917 Lamb waves H. Lamb England Two components of vibrations L, SV, plate 

4 1924 Stoneley waves R. Stoneley England
Two components of vibrations L, SV, 

solid-solid interface 

5 1947 Scholte waves J.G. Scholte Holland
Two components of vibrations L, SV, 

solid-liquid interface 

6 1968-1969 Bleustein-Gulyaev waves
J.L. Bleustein, Yu,V. 

Gulyaev
USA, Russia

One SH component of vibrations, metalized
piezoelectric half-space 

7 1971 Maerfeld-Tournois waves
C. Mearfeld and P. 

Tournois
France

One SH component of vibrations, 

elastic-piezoelectric interface 

8 2022 Kiełczyński waves No.1 P.M. Kiełczyński Poland
One SH component of vibrations, interface 
between conventional and metamaterial 

elastic solid, SPP-like

9 2024 Kiełczyński waves No.2 P.M. Kiełczyński Poland

One SH component of vibrations, interface 

between conventional elastic surface layer 

and metamaterial substrate - Love-like
2

Historical perspective for elastic surface waves Table.1.



3

The concept of a surface wave:  

elastic and/or electromagnetic wave

Surface Plasmon Polariton (SPP) 

electromagnetic wave at a metal- dielectric

interface

Fig.1.
Fig.2.

Entire presentation is a novelty

𝜀 𝜔 = 𝜀0 ∙ 1 −
𝜔𝑝

2

𝜔2 Newly discovered (SH) Surface Elastic Wave: 

Elastic analogue of optical SPP waves

Drude’s model of dielectric constant 𝜀 in metals: 

𝜔𝑝 = Plasmon angular frequency

Dielectric constant

Plasmonic optical

materials

Direction of propagation



PHYSICAL MODEL 
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Fig. 3. Cross-section of the 

waveguide supporting the new 

proposed SH elastic surface waves

propagating in the direction 𝑥1, with 

exponentially decaying fields in the 

transverse direction 𝑥2.

The mechanical displacement 𝑢3
of the new SH surface elastic wave

is polarized along the 𝑥3 axis. 

𝜔𝑝 = Angular frequency of local oscillators

embedded in the lower half-space

𝑠44
2
(𝜔) = 𝑠0 ∙ 1 −

𝜔𝑝
2

𝜔2 Drude’s model 

x2

> 0
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Only one SH component of mechanical

displacement 𝑢3 along the 𝑥3 axis. 
𝑠44

2
(𝜔) follows Drude’s model

Newly discovered SH surface elastic wave propagating at the interface (𝑥2 = 0)

between elastic semi-space and metamaterial elastic semi-space

Fig.4. Fig.5.

2022

Pure elastic

half-space

Elastic metamaterial

half-space (ST Quartz)

𝑠44
2
(𝜔) = 𝑠0 ∙ 1 −

𝜔𝑝
2

𝜔2

Interface

(𝑓𝑝 = 1𝑀𝐻𝑧 ; 𝑣0 = 5060 𝑚/𝑠)

(𝑣1 = 1100 𝑚/𝑠 – PMMA)

𝑠44
1

= const > 0 

𝑠44
2

𝜔 < 0 

𝑠44
1

= 1/𝜇(1) 𝑚2/N

New SH acoustic wave

is evanescent in the
transverse direction x2

Interface

Direction of propagation

along the x1 axis

u3

x2

x3

0

Fig.4.

𝑒−𝑞1𝑥2

𝑒𝑞2𝑥2

∙

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

x1
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Elastic compliance 𝑠44
2
(𝜔) of an elastic

metamaterial substrate follows Drude’s

model. 

Plasmonic elastic materials. 

Meta – in Greek means: after, beyond

E.g., Metaphysics = After Physics

As can be seen, the elastic compliance 𝑠44
2

𝜔
is negative in the range 0 < 𝜔 < 𝜔𝑝.

Fig.6. Elastic compliance 𝑠44
2
(𝜔) of an elastic

metamaterial substrate (half-space) as a function of 

angular frequency 𝜔. 

Movement of material particles is governed by 

the equation of motion along with 

the appropriate boundary conditions at

the waveguide interface. 

𝑠44
2

𝜔 = 𝑠0 ∙ 1 −
𝜔𝑝

2

𝜔2
Fig.6.
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MATHEMATICAL MODEL 
1. Assumptions: 

a) half-spaces are: linear, isotropic, lossless and homogeneous

b) there is no variations along the 𝑥3 axis
c) absence of body forces: 

We started from first principles: NEWTON’S second law of dynamics: 𝜇 = shear modulus

𝑢3
2
= B ∙ 𝑒𝑞2𝑥2 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡

𝑢3
1
= A ∙ 𝑒−𝑞1𝑥2 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡 (2)

(3)

1/𝜇(1) = 𝑠44
1

∶ 1/𝜇(2) 𝜔 = 𝑠44
2

𝜔

Fig.7.

(1)

Constitutive equations (relations): 

𝜏13 = Τ1 𝑠44 Τ𝜕𝑢3 𝜕𝑥1

𝜏23 = Τ1 𝑠44 Τ𝜕𝑢3 𝜕𝑥2

(4)

(5)

u3𝑥1

𝐹 = 𝜌𝑔



• 2. Equations of motion (Wave equation):  

• 3. Boundary conditions: 

• 4. Dispersion equation (Eigenvalue problem) 
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1

𝑣1,2
2

𝜕2𝑢3
(1,2)

𝜕𝑡2
=
𝜕2𝑢3

(1,2)

𝜕𝑥1
2 +

𝜕2𝑢3
(1,2)

𝜕𝑥2
2

𝑞2

−𝑠44
2

𝜔
=

𝑞1

𝑠44
1

ቚ𝑢3
1

𝑥2=0
= ቚ𝑢3

2

𝑥2=0
ቚ𝜏23

1

𝑥2=0
= ቚ𝜏23

2

𝑥2=0

where: 

𝑢3 is the mechanical displacement of the new
SH elastic surface wave

where: 

𝑠44
1

> 0  ; 𝑞1 > 0 𝑎𝑛𝑑 𝑞2 > 0 𝑠44
2

𝜔 < 0 

(7)

(6)

(8)

𝑞1 = 𝑘2 − 𝜌1𝜔
2𝑠44

(1)
𝑎𝑛𝑑 𝑞2 = 𝑘2 − 𝜌2𝜔

2𝑠44
(2)

= 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑠Ω 𝑘,𝜔 = 0

Implicit function of 𝜔 and k
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k 𝜔 = 𝜔 ∙
𝑠44
1
∙𝑠44

2
𝜔

𝑠44
1
+𝑠44

2
𝜔

∙
𝑠44
1
∙𝜌2−𝑠44

2
𝜔 ∙𝜌1

𝑠44
1
−𝑠44

2
𝜔

𝑣𝑝 𝜔 =
𝜔

𝑘
=

ቁ𝑠44
1
+ 𝑠44

2
(𝜔

ቁ𝑠44
1
∙ 𝑠44

2
(𝜔

∙
ቁ𝑠44

1
− 𝑠44

2
(𝜔

𝑠44
1
∙ 𝜌2 − 𝑠44

2
(𝜔) ∙ 𝜌1

1) Dispersion equation

2) Phase velocityFig.8.

ANALYTICAL SOLUTIONS:

3) Group velocity: Differentation of an implicit function Ω

Fig.8. Dispersion curve (angular frequency 𝜔
as a function of wavenumber 𝑘

𝑣𝑔𝑟 𝜔 =
𝑑𝜔

𝑑𝑘
=

1

𝑣𝑝 𝜔

2 ∙ 𝑠44
1

2
− 𝑠44

2 𝜔
2

2𝑠44
1 𝑠44

2 𝜔 𝑠44
1 ∙ 𝜌2 − 𝑠44

2 𝜔 ∙ 𝜌1 + 𝜔𝑠44
1 𝑑𝑠44

2 𝜔
𝑑𝜔

𝑠44
1 ∙ 𝜌2 − 2𝑠44

2 𝜔 ∙ 𝜌1 + 2 𝑠44
2 𝜔

2 𝑠44
1 ∙ 𝜌2 − 𝑠44

2 𝜔 ∙ 𝜌1

𝑠44
1

2
− 𝑠44

2 𝜔
2

𝑓𝑠𝑝= 𝑓𝑝/ 1 + ൗ𝑠44
(1)

𝑠0
Τ1 2

Surface plasmon

frequency
(9)

(10)

(11)

(12)

𝑓𝑠𝑝 = 𝑓𝑝/ 1 + ൗ𝑠44
(1)

𝑠0
Τ1 2

𝜔 = 𝑣1𝑘

𝑘

Large k



10

Fig.9.

Layered waveguide of the new
Shear Horizontal (SH) 
surface elastic wave

NEWLY DISCOVERED (SH) SURFACE ELASTIC WAVE
MECHANICAL DISPLACEMENT DISTRIBUTION

x1

𝜌1, 𝑠44
1

𝜌2, 𝑠44
2
(𝜔 )

u3

0

x3
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Lower metamaterial
elastic half-space

Mechanical displacement of the new wave

Upper pure
elastic half-space

𝑠44
1
> 0

𝑠44
2

𝜔 < 0

0

t = const
direction of wave
propagation

Power flow
Poynting vector



Power flow in the new wave waveguide
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𝑃1
𝑡𝑜𝑡𝑎𝑙 𝜔 = ∞−׬

0
𝑃1
𝑙𝑜𝑤𝑒𝑟 𝑥2 𝑑𝑥2 + 0׬

+∞
𝑃1
𝑢𝑝𝑝𝑒𝑟

𝑥2 𝑑𝑥2 =

1

4
𝐴2𝑘 𝜔 ∙ 𝜔 ∙

1

𝑠44
2

𝜔

1

𝑞2
+

1

𝑠44
1

1

𝑞1

𝑃1
𝑢𝑝𝑝𝑒𝑟

𝑥2 =
1

2
𝐴2

1

𝑠44
1
𝑘 𝜔 ∙ 𝜔 ∙ ex p −2𝑞1𝑥2

𝑃1
𝑙𝑜𝑤𝑒𝑟 𝑥2 =

1

2
𝐴2

1

𝑠44
2

𝜔
𝑘 𝜔 ∙ 𝜔 ∙ ex p 2𝑞2𝑥2

Total Power Flow: 

𝑃1
𝑡𝑜𝑡𝑎𝑙~ 𝑣𝑒 = 𝑣𝑔𝑟 → 0 ; 𝑣𝑒 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝜔 → 𝜔𝑠𝑝

Fig.10.

𝑃1 = −
1

2
𝜏13 −𝑗𝜔𝑢3

∗ Complex Poynting

vector



Intriguing Properties
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1) Phase velocity 𝑣𝑝 𝜔 → 0

for 𝜔 → 𝜔𝑠𝑝

2) Group velocity 𝑣𝑔𝑟 𝜔 → 0

for 𝜔 → 𝜔𝑠𝑝

Fig.11.

Fig.12.

Remark: 

Newly discovered SH 

surface elastic wave is a 

direct

analogue of the Surface 

Plasmon Polariton (SPP) 

TM electromagnetic wave

𝑓 [kHz] 𝑣𝑝 [m/s] 𝑣𝑔𝑟 [m/s] 𝛿𝑢𝑝𝑝𝑒𝑟 [mm] 𝛿𝑙𝑜𝑤𝑒𝑟 [mm] 𝜆𝒑𝒍 [mm] 𝜆𝟎[mm]

10 1094.2 1082.7 169.3 0.805 109.4 110.0

20 1077.1 1034.0 42.2 0.802 53.7 55.0

50 970.2 782.2 6.55 0.780 19.4 22.0

140 194.2 9.45 0.224 0.213 1.39 7.86

143 77.6 0.61 0.087 0.086 0.54 7.69

Table.2.
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Extraordinary Features of the New Wave
1. Newly discovered SH surface elastic wave No. 1 is an elastic

anologue of the Surface Plasmon Polariton (SPP) electromagnetic TM
wave propagating at the interface: dielectric over metallic substrate. 

Here, MECHANICS meets ELECTROMAGNETISM

2.      Ability to amplify evanescent waves

3. Near-field subwavelength acoustic imaging (resolution below the diffraction limit)
In the table below, we can observe a very useful advantage of the new elastic wave

4.      Breaking the diffraction limit 

5.     Wave trapping (zero group and energy velocity)  

Type of wave Resolution Frequency

Using the newly 

discovered wave

of the order of

𝜇𝑚

of the order of 

𝑀𝐻𝑧
Using 

conventional

elastic waves

of the order of 

𝜇𝑚
of the order of 

𝐺𝐻𝑧 MHz not GHz

Resolution of the order of 𝜇𝑚Table.3.



Amplification of evanescent waves

(schematic view) 
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Fig.13.

With elastic metamaterial plate

Without elastic metamaterial plate

New SH elastic wave inherits majority of extraordinary properties

of  Surface Plasmon Polariton wave (SPP), e.g., amplification of evanescent waves

Metamaterial Plate

𝑠44 < 0

J.B. Pendry, Physical Review Letters, 85, No 18, (2000), 

Negative Refraction Makes a Perfect Lens



Newly discovered SH surface elastic wave has an exact analogue 

in electromagnetism - Surface Plasmon Polariton (SPP) wave

16
TM Electromagnetic Surface Wave SH Elastic Surface Wave

Fig.14.

Fig.15.

TM mode

𝐴/𝑚

𝑚



Correspondence between: 

1. Newly discovered SH Elastic Surface Waves and 

2. Electromagnetic Surface Waves of the Surface Plasmon Polariton (SPP) type

Analogies between Mechanics and Electromagnetism

Here: Newly discovered SH surface elastic waves bridge the gap between

MECHANICS and ELECTROMAGNETISM

These two waves have the same: 

1. Field distributions

2. Geometry of the waveguide

3. Equations of motion

4. Boundary conditions

5. Dispersion equation

6. Analogous analytical solutions

for field variables 17

Direct Sturm-Liouville Problem

2 different physical phenomena

share a Common Mathematical Model



TM modes (SPP): ELECTROMAGNETISM New SH surface elastic wave: MECHANICS

1. Dielectric half-space modes 1. Elastic half-space

3. Boundary conditions 3. Boundary conditions

4. Dispersion equation (Eigenvalue equation):          4. Dispersion equation (Eigenvalue equation):  

Helmholtz equation resulting from Maxwell’s equations

𝑑2𝐻3

𝑑𝑥2
2 + 𝜇1𝜀1𝜔

2 ∙ 𝐻3 = 𝑘2 ∙ 𝐻3
𝑑2𝑢3

𝑑𝑥2
2 + 𝜌1𝑠44

1
𝜔2 ∙ 𝑢3 = 𝑘2 ∙ 𝑢3

where: 𝑞1 = 𝑘2 − 𝜇1𝜀1𝜔
2

𝑞2 = 𝑘2 − 𝜇2𝜀2(𝜔)𝜔
2

a) continuity of 
1

𝜀

𝑑𝐻3

𝑑𝑥2
and 𝐻3 at 𝑥2 = 0

where: 𝑞1 = 𝑘2 − 𝜌1𝑠44
1
𝜔2

𝑞2 = 𝑘2 − 𝜌2𝑠44
2
(𝜔)𝜔2

(13)

(14)

(15)

(17)

(16) (20)

(18)

(19)a) continuity of  
1

𝑠44

𝑑𝑢3

𝑑𝑥2
and 𝑢3 at 𝑥2 = 0

𝑑2𝐻3

𝑑𝑥2
2 + 𝜇2𝜀2(𝜔)𝜔

2 ∙ 𝐻3 = 𝑘2 ∙ 𝐻3

2. Metallic half-space – TM modes 2. Elastic metamaterial half-space

𝑑2𝑢3

𝑑𝑥2
2 + 𝜌2𝑠44

2
(𝜔)𝜔2 ∙ 𝑢3 = 𝑘2 ∙ 𝑢3

𝑞2
−𝜀2(𝜔)

=
𝑞1
𝜀1

𝑞2

−𝑠44
2

𝜔
=

𝑞1

𝑠44
1

Helmholtz equation resulting from Equation of motion
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No

SPP electromagnetic surface waves in 

metal-dielectric waveguides

New SH elastic surface waves in elastic

metamaterial waveguides

Property Implementation Implementation Property

1
Longitudinal electric 

field
𝐸1 𝜏23

Shear horizontal SH 

mechanical stress

2 Transverse electric field 𝐸2 −𝜏13
Shear mechanical

stress

3
transverse magnetic 

field
𝐻3 𝑣3 = −𝑗𝜔𝑢3

SH particle velocity

𝑣3 = Τ𝜕𝑢3 𝜕𝑡

4
Dielectric function in 

metal
𝜀2 𝜔 𝑠44

2 𝜔
Elastic compliance in 

metamaterial half-space

5
Dielectric function in 

dielectric
𝜀1 𝑠44

1 Elastic compliance in 

conventional half-space

6
Magnetic permeability 

in metal
𝜇1 𝜌1

Density of metamaterial 

half-space

7
Magnetic permeability 

in dielectric
𝜇2 𝜌2

Density of conventional 

half-space

8

Wavenumber for

Τ𝜇1 𝜇2 = 1
𝑘 𝜔 = 𝑘1

𝜀2 𝜔

𝜀2 𝜔 + 𝜀1
𝑘 𝜔 = 𝑘1

𝑠44
2 𝜔

𝑠44
2 𝜔 + 𝑠44

1

Wavenumber for  

Τ𝜌1 𝜌2 = 1

9
Phase velocity of SPP 

electromagnetic waves
𝑣𝑝 𝜔 = 𝑣1

𝜀2 𝜔 + 𝜀1
𝜀2 𝜔

𝑣𝑝 𝜔 = 𝑣1
𝑠44
2 𝜔 + 𝑠44

1

𝑠44
2 𝜔

Phase velocity of new SH 

elastic surface waves

10

Complex Poynting

vector in propagation 

direction 𝑥1

𝑃1 =
1

2
𝐸2 × 𝐻3

∗ 𝑃1 = −
1

2
𝜏13𝑣3

∗ Complex Poynting vector in 

propagation direction 𝑥1

11

Complex Poynting

vector in transverse 

direction  𝑥2

𝑃2 = −
1

2
𝐸1 × 𝐻3

∗ 𝑃2 = −
1

2
𝜏23𝑣3

∗ Complex Poynting vector in 

transverse direction  𝑥2

Table 4. Correspondence between 

field variables of the SPP 

electromagnetic waves propagating

in metal–dielectric waveguides and 

the proposed new SH elastic 

surface waves propagating in

elastic metamaterial waveguides.



1) Various classical waves are governed via similar types of wave equation

2) Analogies between those waves are very fruitful and repeatedly resulted in the mutual 

export of ideas between optics and acoustics

3) Surface waves at interfaces between continuos media, such as Surface Plasmon

Polariton (SPP) are highly important for modern optics

4) Surface modes are particularly important in the context of topological quantum or

classical-wave systems, which are currently attracting enormous attention

5) The equations for SH elastic waves in solid media also have a form compatible to 

Maxwell equations 𝜀, 𝜇 and also involve two medium parameters: the density and  

mechanical compliance 𝜌, 𝑠44

6) Many acoustic and electromagnetic quantities (e.g., the Energy density, Poynting

vector etc.) have similar forms

20

Analogies between Elastodynamics and Electrodynamics



SUMMARY 
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1)  New SH surface elastic wave was recently discovered. It has unique properties:

a) deeply subwavelength ~𝜆/20 penetration depth (breaking the diffraction limit) 

b) high concentration of energy in the vicinity of the guiding surface

c) very low phase and group velocities tending to zero (𝑣𝑝 and 𝑣𝑔𝑟 → 0 ;𝜔 → 𝜔𝑠𝑝)

d) can be used in near-field subwavelenght acoustic imaging and superlensing

3) A new branch of science – Plasmonic Elastodynamics has been developed. 

4) Interdisciplinary connections between Mechanics (Elastodynamics), 

Electrodynamics and Quantum Mechanics were identified

5) Nowadays, we observe a tremendous new development in Acoustic (Mechanical) waves

6) From Electrodynamics Mechanics = Metamaterials and Photonic (Phononic) Crystals

7) From Quantum Mechanics Mechanics = Topological Materials and Non-Hermitian Systems 

2) Strict analogies between Mechanical waves and Electromagnetic

waves were found



1) Spring compliance:  𝐶(𝜔) = 𝐶0 ∙ 1 −
𝜔𝑝

2

𝜔2

2) Mass density:

3) Bulk modulus:   𝐵 𝜔 = 𝐵0 ∙ 1 −
𝜔𝑝

2

𝜔2

4) Negative: elastic compliance: 𝑠44 𝜔 < 0 ;  papers: 

a) Y. Lai et.al., Nature Materials, 10, 620, 2011; 

b) X. Zhou, X. Liu and G. Hu, Theoretical & Applied Mechanical Letters, 2, 041001, 2012 

5) Negative Young’s modulus E 𝜔 < 0: International Journal of Engineering Science 150 (2020) 103231

S. Adhikari et al., 

6) Drude-like elastic compliance: 

𝑠44 𝜔 = 𝑠0 ∙ 1 −
𝜔𝑝

2

𝜔2 (?)
22

ρ 𝜔 = ρ0 ∙ 1 −
𝜔𝑝

2

𝜔2

THE FOLLOWING METAMATERIALS WERE FABRICATED, 

UP TO DATE



Spring-mass model of a mechanical resonator 
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Fig.17. Equivalent lumped elastic compliance 𝐶𝑒𝑓𝑓 𝜔

representing an overall behavior of the mechanical 

resonator from Figure 16.

Fig.16.

Fig.17.

Fig.16. Spring-mass model of a mechanical resonator

𝐶0 = Τ1 𝑘 spring elastic compliance. 

𝑌 𝜔 = Τ𝑣 𝜔 𝐹 𝜔 = 𝑗𝜔𝐶0 +
1

𝑗𝜔𝑚
= 𝑗𝜔𝐶0 1 −

𝜔0
2

𝜔2

𝑌 𝜔 = Mechanical admittance
𝐶𝑒𝑓𝑓(𝜔) = 𝐶0 1 −

𝜔0
2

𝜔2
𝐶𝑒𝑓𝑓 𝜔 = Drude’s model



Mechanical Metamaterials
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1. With negative mass density: 𝜌 < 0 

2. With negative stiffness: negative slope in their stress-strain relations 

3. With negative compressibility: B < 0

4. Dilatational metamaterials: auxetic metamaterials, Poisson’s ratio = -1 

5. Pentamode metamaterials: G = 0, 𝜈 = 0.5 – metafluids

6. Auxetic metamaterials: 𝜈 < 0 – negative Poisson’s ratio 
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